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ABSTRACT A concept of orientation is relevant for the
passage from Jordan structure to associative structure in
operator algebras. The research reported in this paper bridges
the approach of Connes for von Neumann algebras and
ourselves for C*-algebras in a general theory of orientation
that is of geometric nature and is related to dynamics.

A problem that dates back to the 1950s is to characterize the
ordered linear spaces that are the self-adjoint parts of C*-
algebras or of von Neumann algebras. This problem was
implicit in Kadison’s paper (1), and it was explicitly raised for
von Neumann algebras by Sakai (2) and for C*-algebras by
Sherman (3). It follows from Kadison’s results (1) that the
self-adjoint part of a C*-algebra is isometrically isomorphic, as
an ordered normed linear space, to the space A(K) of all
w*-continuous affine functions on the state space K. Similarly,
the self-adjoint part of a von Neumann algebra is isometrically
isomorphic to the space of all bounded affine functions on the
normal state space. In view of this, characterizing the self-
adjoint part of a C*-algebra (respectively von Neumann alge-
bra) is equivalent to characterizing the state space of a
C*-algebra (respectively the normal state space of a von
Neumann algebra).

Connes gave a solution of the ordered linear space version
of this problem for a s-finite von Neumann algebra in ref. 4 by
first characterizing the associated cone Pj

\ of Tomita-Takesaki
theory. The state spaces of C*-algebras were characterized by
Alfsen, Hanche-Olsen, and Shultz (5) and the normal state
spaces of von Neumann algebras by Iochum and Shultz (6).

By a theorem of Kadison (7) the ordering and the norm of
a C*-algebra (or equivalently, its state space) determine the
symmmetrized (Jordan) product 1⁄2(ab 1 ba). However, they
do not determine the product itself, because the opposite
algebra has the same ordering and norm. Thus some additional
structure is needed to determine the associative product.

It was Connes (4) who first realized that a concept of
orientation is relevant for this purpose (and his concept was
later used in the axiomatic context of JBW-algebras by Bel-
lissard and Iochum in refs. 8 and 9). Alfsen, Hanche-Olsen, and
Shultz (5) also introduced a concept with the same name and
for the same purpose. However, the definitions had little in
common. Connes’ notion was algebraic, global in nature, and
applied to von Neumann algebras. That of Alfsen, Hanche-
Olsen, and Shultz was geometric, local in nature, and applied
to state spaces of C*-algebras. One purpose of our current
work is to generalize both notions so that they apply to both C*
and von Neumann algebras. (There are some significant
obstacles to overcome to accomplish this as we will discuss
later.) Our second purpose is to relate the two concepts and to
explain how they both relate to dynamics. We will build a
bridge between these two concepts of orientation by introduc-
ing a third concept: that of a dynamical correspondence. This
paper is a survey of the results with brief comments on the

proofs. Complete proofs will appear elsewhere (in ref. 10 for
the first part of this paper.)

There are two parts to this paper. The first describes the
notion of dynamical correspondence and its relationship to
Connes’ notion of orientation. The context for the first part
will be JB and JBW algebras: the Jordan analog of C* and von
Neumann algebras. The second part contains a generalization
of our geometric notion of orientation of state spaces of
C*-algebras to the context of normal state spaces of von
Neumann algebras and the connection of this notion with
dynamical correspondences. The context for the second part
will be von Neumann algebras.

To set the stage for the first part, we first review the
connection of Jordan algebras to the original problem of
characterizing the spaces of self-adjoint elements of an oper-
ator algebra and indicate how dynamics play a role. The
problem is motivated by physics, as the self-adjoint elements of
such algebras are used to represent bounded observables in
algebraic models of quantum mechanics. However, the self-
adjoint part A of a C*-algebra is not closed under the given
associative product, but only under the Jordan product a C b 5
1⁄2(ab 1 ba). This product makes A into a (real) Jordan algebra,
and it has been proposed to model quantum mechanics on
Jordan algebras rather than associative algebras. This ap-
proach is corroborated by the fact that many physically rele-
vant properties of observables are adequately described by
Jordan constructs. Knowing an element of A, we can express
not only the expectation value of the corresponding observ-
able, but its entire probability law, which is given by spectral
functional calculus, and in turn by the squaring operation a °
a2.

The Jordan algebra approach to quantum mechanics was
initiated by Jordan, von Neumann, and Wigner (11) where they
introduced and studied finite dimensional ‘‘formally real’’
Jordan algebras. The restriction to finite dimensions was
removed by von Neumann (12). Jordan operator algebras
(linear spaces of self-adjoint operators on a Hilbert space
closed under the Jordan product) first were studied by Segal
(13), Topping (14), and Størmer (15). In ref. 16 Størmer solved
the (spatial) problem of characterizing C*-algebras among
such Jordan operator algebras acting on a given Hilbert space.
The general (nonspatial) concepts of JB-algebras and JBW-
algebras (together with a Gelfand–Naimark type representa-
tion theorem) were given by Alfsen, Shultz, and Størmer (17)
and by Shultz (18), respectively. These algebras are defined
axiomatically as (real) Jordan algebras, which are also Banach
spaces, subject to suitable conditions connecting Jordan prod-
uct and norm. (For the theory of such algebras see ref. 19.) The
self-adjoint part of a C*-algebra or a von Neumann algebra is
a special case of a JB-algebra or a JBW algebra, respectively.
Not all JB-algebras or JBW-algebras arise in this fashion (cf.
ref. 19, ch. 3–4), but nevertheless they have enough structure
to effectively model quantum mechanical observables.
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However, it is an important feature of quantum mechanics
that the physical variables play a dual role, as observables and
as generators of transformation groups. The observables are
random variables with a specified probability law in each state
of the quantum system, whereas the generators determine
one-parameter groups of transformations of observables
(Heisenberg picture) or states (Schrödinger picture).

Both aspects can be adequately dealt with in the C*-algebra
or von Neumann algebra formulation of quantum mechanics.
An element a in the self-adjoint part A of such algebras
represents an observable whose probability law is determined
by spectral theory as indicated above, whereas an element h in
A determines the one-parameter group at : x ° eithxe2ith

(equivalently dat(x)ydtut50 5 i[h, x]), which represents the time
evolution of the observable x. The spectral functional calculus
is a Jordan construct, but the generation of one-parameter
groups cannot be expressed in terms of the symmetrized
product. Instead it is determined by the antisymmetrized
product in A, which we will write as follows a , b 5 i

2
[a, b] 5

i
2

(ab 2 ba). Thus the decomposition of the associative product
into its Jordan part and its Lie part

ab 5 a C b 2i~a , b!

separates the two aspects of a physical variable.
To solve the characterization problem, we must find appro-

priate conditions for an ordered normed linear space A, under
which it is possible to define an associative product on A 1 iA
making this space a C*-algebra or a von Neumann algebra. By
the discussion above, this problem can be divided in two parts:
first to construct the Jordan part of the associative product,
then the Lie part when the Jordan part is known. As was
discussed above, the key to doing this is the concept of
orientation and the related notion of a dynamical correspon-
dence that we will now discuss.

Dynamical Correspondences

A bounded linear operator d on a JB-algebra A is called an
order derivation if exp(td)(A1) , A1 for all t [ R, or what is
equivalent, if exp(td) is a one-parameter group of order
automorphisms. (This concept was first used by Connes in the
context of ref. 4.) An important class of order derivations are
the Jordan multipliers db(a) 5 b C a. An order derivation d on
a unital JB-algebra A is self-adjoint if d 5 da for some a [ A
and skew-adjoint (or just skew) if d(1) 5 0. Each order
derivation d on a unital JB-algebra A has a unique decompo-
sition d 5 d1 1 d2 where d1 is self-adjoint and d2 is skew, and
the adjoint of d is defined by d* 5 d1 2 d2. The skew order
derivations are precisely the Jordan derivations (satisfying the
Leibniz rule for the Jordan product). They are also the ones for
which the operators exp(td) fix 1, so the duals of these
operators leave the state space invariant. Note that an order
derivation on a JBW-algebra is automatically s-weakly con-
tinuous, so it determines a one-parameter group exp(td*) of
affine automorphisms of the normal state space as well as the
state space.

One can show that the set D(A) of all order derivations of
a unital JB-algebra A is a real linear space closed under Lie
brackets [d1, d2] 5 d1d2 2 d2d1. One also can show (using the
Kadison-Sakai theorem on inner derivations) that if A is a the
self-adjoint part of a von Neumann-algebra }, then the order
derivations are the operators dm defined by dm(x) 5 1⁄2(mx 1
xm*) for m [ }. In particular, a skew order derivation is of the
form dia (x) 5 i

2
[a, x] where a [ A. In this case, the associated

one-parameter group is

exp~tdia!~x! 5 eitay2xe2itay2.

Connes’ notion of orientation can be transferred from the
cone Pj

\ of a JBW-algebra A to the algebra itself, and we will
call the resulting notion a ‘‘Connes orientation on A.’’ Like the
original concept, such an orientation is a complex structure
compatible with involution on the Lie algebra of order deri-
vations modulo its center Z(D(A)). To simplify the notation,
we write D̃(A) in place of D(A)yZ(D(A)), and we denote the
equivalence class of an element d of D(A) modulo Z(D(A)) by
d̃. Note that the involution (d̃)* 5 (d*̃) is well defined. Thus a
Connes orientation on a JBW-algebra A is a complex structure
on D̃(A), which is compatible with Lie brackets and involution,
i.e., a linear operator I on D̃(A) which satisfies the require-
ments:

~i! I2 5 21 (the identity map),

~ii! @Id̃1, d̃2# 5 @d̃1, Id̃2# 5 I@d̃1, d̃2#,

~iii! I~d̃*! 5 2~Id̃!*.

The idea behind this definition is to axiomatize the transition
from da to dia in the von Neumann algebra case. Here it is
necessary to work with equivalence classes because there is no
well-defined map da ° dia on A itself. (The element a is not
determined by the operator da if a is not known to be
self-adjoint.)

An alternative approach is to axiomatize the map a ° dia.
Then we arrive at the following notion, which makes sense both
in the JB and the JBW context (and in particular in the C* and
the von Neumann context).

A dynamical correspondence on a unital JB-algebra A is a
linear map c : a ° ca from A into the set of skew order
derivations on A, which satisfies the requirements:

~i! @ca, cb# 5 2@da, db# for a, b [ A,

~ii! ca~a! 5 0 for all a [ A.

The skew order derivations determine one-parameter groups
of affine automorphisms of the state space of A (and also of
the normal state space in the JBW case). Thus a dynamical
correspondence gives the elements of A a double identity,
which reflects the dual role of physical variables as observables
and as generators of a one-parameter group of motions; hence
the name ‘‘dynamical correspondence.’’

Because the Jordan product is abelian, there is no useful
concept of ‘‘commutator’’ for elements in a JB-algebra, but the
commutators of the associated Jordan multipliers can be used
as a substitute in view of the identity [da, db] 5 1⁄2d(a,b) in
C*-algebras. [As before, dm(x) 5 1⁄2(mx 1 xm*) for a non-self-
adjoint element m.] Thus the condition (i) above is a kind of
quantization requirement, relating commutators of elements
to the commutators of the associated generators. Note also
that the equation ca(a) 5 0 is equivalent to exp(tca)(a) 5 a for
all t [ R. Thus condition (ii) says that the time evolution
associated with an observable fixes that observable.

To relate the definition of a dynamical correspondence to
the geometric notion of orientation that we will discuss later,
we will explain the geometric meaning of this definition in the
case of the 2 3 2 matrix algebra M2 (which models a two-level
quantum system, cf. e.g., ref. 20, ch. 15). Here the state space
is the Euclidean 3-ball B3, and a self-adjoint element a [ } acts
as an affine function on the ball. This function attains its
maximum and its minimum at two antipodal points (the North
Pole and the South Pole in Fig. 1), and the corresponding
one-parameter group consists of rotations of the ball about the
diameter between these two points (in either one of the two
possible directions depending on orientation).

The orbits of exp(t(dia)*) are the ‘‘parallel circles’’ in Fig. 1.
The orbits of exp(t(da)*) will take us out of the state space, but
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this can be remedied by a normalization. Then the resulting
orbits will be the ‘‘longitudinal semicircles’’ traced out from
South Pole to North Pole. In Fig. 1 the generators (dia)* and
(da)* are visualized as tangent vectors (velocity vectors) at an
arbitrary point on the surface of the ball.

Note that a Connes orientation is defined in the context of
JBW-algebras, whereas a dynamical correspondence is defined
in the general context of unital JB-algebras (which include
JBW-algebras as a special case), so the two concepts cannot be
equivalent. However, for a JBW-algebra, each Connes orien-
tation I determines a unique dynamical correspondence c
determined by ca [ I (d̃a), and each dynamical correspondence
arises in this way from a unique Connes orientation, so the two
concepts are in fact equivalent in the JBW case.

If A is a unital JB-algebra (JBW algebra) and (x, y) ° xy is
an associative product on the complex linear space A 1 iA,
which induces the given Jordan product on A and organizes A
1 iA to a C*-algebra (von Neumann algebra) with the invo-
lution (a 1 ib)* 5 a 2 ib and the norm ixi 5 ix*xi1/2, then this
product is said to be a Jordan compatible C*-product (respec-
tively, von Neumann-product).

1. THEOREM. A unital JB-algebra is (isomorphic to) the
self-adjoint part of a C*-algebra iff there exists a dynamical
correspondence on A. In this case each dynamical correspon-
dence c on A determines a unique Jordan compatible C*-product
such that cab 5 i

2
(ab 2 ba) for each pair a, b [ A, and each

Jordan compatible C*-product arises in this way from a unique
dynamical correspondence c on A. The same conclusions hold
with JBW in place of JB and ‘‘von Neumann’’ in place of C*.

In the proof of this theorem one constructs the associative
product from the dynamical correspondence via the equation
ab 5 a C b 2 i(a , b) where a , b 5 cb(a).

2. COROLLARY. A JBW-algebra A is the self-adjoint part of a
von Neumann algebra iff there exists a Connes orientation on A.
In this case each Connes orientation I on A determines a unique
Jordan compatible von Neumann product such that I(d̃d) 5 d̃id
for each d [ A 1 iA, and each Jordan compatible von
Neumann product arises in this way from a unique Connes
orientation on A.

Geometric Orientations

The characterization of C*-algebra state spaces by Alfsen,
Hanche-Olsen, and Shultz (5) is based on two earlier papers of
Alfsen and Shultz characterizing the state space K of a
JB-algebra (21, 22). To move from JB-state spaces to C*-state
spaces, two conditions are imposed: the 3-ball axiom and
orientability. The former condition states that the face gen-
erated by any two extreme points (‘‘pure states’’) is either a line
segment or else is affinely isomorphic to the standard 3-ball B3

in R3. (In a general JB-algebra, these faces are also balls, i.e.,
affinely isomorphic to the unit ball of a Hilbert space, but these
balls can be of arbitrary finite or infinite dimension.) The 3-ball

axiom guarantees that the order-unit space A(K) admits a
faithful representation F onto a norm closed Jordan subalge-
bra of @(H)sa for a complex Hilbert space H. The orientability
axiom guarantees that there is one such representation F for
which F(A) is the self-adjoint part of the C*-algebra it
generates in @(H).

The concept of ‘‘orientability’’ is defined in terms of facial
3-balls, i.e., faces that are (affinely isomorphic to) the standard
3-ball B3. An orientation of a facial 3-ball F is an equivalence
class of affine isomorphisms f : B3 3 F where f1 ; f2 if
det(f2

21f1) 5 1. Thus an orientation of a 3-ball is determined
by an (orthogonal) frame, i.e., an ordered triple of orthogonal
directed axes, with two frames determining the same orien-
tation if one can be rotated into the other. An orientation of
all of K is a ‘‘continuous choice’’ of orientation for each facial
3-ball. We make this precise by topologizing the set of all
oriented facial 3-balls as well as the set of all (nonoriented)
facial 3-balls in a natural way involving the w*-topology of K
(see ref. 5) for the details). This makes the former set a locally
trivial Z2-bundle over the latter. If this bundle is trivial, then
K is said to be orientable, and each continuous cross-section of
the bundle is called a global orientation of K (or just an
orientation of K). The main result of ref. 5 says that a
JB-algebra A with state space K is the self-adjoint part of a
C*-algebra iff K has the 3-ball property and is orientable (ref.
5, th. 8.4). Moreover, if these conditions are satisfied, then
there is a 1–1 correspondence between C*-structures on A 1
iA and global orientations of K (ref. 5, cor. 8.5).

Iochum and Shultz (6) first characterize the normal state
space of a JBW-algebra. Then they turn to von Neumann
algebras. Because the normal state space of a von Neumann
algebra may be devoid of extreme points, and hence also of
facial 3-balls, one must replace the 3-balls by ‘‘blown up
3-balls’’ (which were introduced under the name ‘‘global
3-balls’’ in ref. 6, Def. 2.1). We will say more about blown-up
3-balls later on. Here we will only point out that the normal
state space of a von Neumann algebra is characterized among
the normal state spaces of JBW-algebras by an axiom similar
to the original 3-ball axiom (ref. 6, th. 2.9). No orientability
axiom is needed in this case. Nevertheless, here, too, one may
ask whether there is a notion of ‘‘global orientation’’ in 1–1
correspondence with associative products in the same way as
for C*-algebras.

We will present our general definition of orientation for von
Neumann algebras in two versions, one for the algebras
themselves and one for their normal state spaces. But we will
concentrate on the normal state space version, which is closer
to the existing definition of orientation in the C*-case (5).

Henceforth } shall be a von Neumann algebra with normal
state space K. There is a 1–1 map p ° Fp 5 {v [ K u v(p) 5
1} from projections in } to norm closed faces in K, and this
map is a homeomorphism from the norm topology on } to the
Hausdorff metric on closed subsets of K. Generally we refer to
p9 5 1 2 p as the complementary projection to p and to F9 5
F12p as the complementary face to F 5 Fp. In the M2 case
(where K 5 B3) the complementary faces are exactly the pairs
of antipodal boundary points. In the general case an ordered
pair (F, F9) of complementary faces will be called a generalized
axis.

There is a natural 1–1 correspondence between generalized
axes in K and symmetries (self-adjoint unitaries) in } because
symmetries are of the form s 5 p 2 p9. For each generalized
axis (F, F9) with corresponding symmetry s there is a unique
affine automorphism with period 2 of K whose fixed point set
is exactly co(F ø F9), namely the dual of the conjugation
Us : x ° sxs. We call this automorphism the reflection of K
about the generalized axis (F, F9). A triple of generalized axes
is called a 3-frame if the associated reflections have the
following properties generalizing elementary properties of an
ordinary (orthogonal) frame in B3:

FIG. 1. State space of M2.
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(i) Each reflection exchanges the faces F, F9 of each of the
other two axes.

(ii) The product of all three reflections in any order is the
identity map.

The following properties of the corresponding symmetries
s1, s2, s3 are equivalent to those above:

~i!9 si C sj 5 0 for i Þ j.

~ii!9 Us1
Us2

Us3
5 1 (the identity map).

If the triple (s1, s2, s3) satisfies (i)9 and (ii)9 above, then we call
it a Cartesian triple of symmetries (or just a Cartesian triple).
An example of a Cartesian triple of symmetries are the Dirac
spin matrices in M2.

A symmetry r 5 p 2 p9 is called balanced if the projections
p and p9 are equivalent, and then (by orthogonality) also
exchangeable by a symmetry s (i.e., p9 5 sps). If r is a balanced
symmetry, then there exists another balanced symmetry s such
that r C s 5 0 (the same s as above) and then in turn a third
balanced symmetry t such that (r, s, t) is a Cartesian triple. The
possible choices for t are t 5 izrs where z is a central symmetry.
Thus there exists a Cartesian triple in } (and a 3-frame in K)
iff there exists a balanced symmetry in }, or equivalently iff
the unit 1 is halvable (i.e., the sum of two equivalent projec-
tions).

If K has a 3-frame, then we call it a blown-up 3-ball. (This
definition applies also in the JBW-case. It is equivalent to the
original definition of a ‘‘global 3-ball’’ in ref. 6, Def. 2.1, which
provides further justification for the name ‘‘blown-up 3-ball.’’)
By the above, K is a blown-up 3-ball iff } has a halvable unit.
This is the case iff } has 2 3 2 matrix units, or equivalently iff
} > M2 R 1 for a von Neumann algebra 1. Hence K is a
blown-up 3-ball iff K is the normal state space of an algebra of
this type.

We shall see that the Cartesian triples in } determine
*-derivations (5skew order derivations) with properties anal-
ogous to those of *-derivations on M2.

3. THEOREM. If d is a *-derivation on a von Neumann algebra
}, then the following are equivalent:

~i! d 5 dis for a symmetry s [ }.

~ii! d3 5 2d.

(iii) Each v [ K is either a fixed point for the one-parameter
group exp(td*) or a periodic point with minimal period 2p.

~iv! Sp~d! , $ 2 i , 0, i%.

In the proof of this theorem (i)f (ii) is easy. (ii)f (iii) follows
by a direct calculation that shows orbits are circles with period
2p. (iii)f (iv) applies known results on Banach algebras to the
operator d* on the predual }* of } (which satisfies the
equation f(d*) 5 0 where f is the entire function f(l) 5 e2pl 2
1 with simple zeros), and (iv) f (i) makes use of arguments
similar to those used in the theory of Arveson spectrum and
spectral subspaces without actually quoting results from this
theory.

A *-derivation d of a von Neumann algebra that satisfies the
requirement d3 5 2d will be called a rotational derivation. If
d 5 dis is a rotational derivation and s 5 p 2 p9 where p is a
projection with associated norm closed face F , K, then the
fixed point set of exp(td*) is co(F ø F9) and the orbit of each
v ¸ co(F ø F9) is (affinely isomorphic to) a circle with center
in co(F ø F9). Thus the one-parameter group exp(td*) of a
rotational derivation d 5 dis may be thought of as rotational
motion of K with period 2p about the generalized axis (F, F9).

Assume that } has a halvable unit. For every Cartesian
triple (r, s, t) the operator c 5 [ds, dt] is a rotational derivation
such that ker c 5 {r}c where {r}c denotes the relative

commutant of r in } (in particular c(r) 5 0), and also such that
c(s) 5 t. (Actually c 5 [ds, dt] is the unique rotational
derivation with these properties.) We call c the rotational
derivation associated with the given Cartesian triple a 5 (r, s,
t), and we denote it by ca. If a* is the 3-frame determined by
a, then the one-parameter group exp(tc*) fixes the first
generalized axis of a*, and for t 5 p/2 it carries the second
generalized axis into the third. We will call it the rotational
action associated with a*.

Assume now that } is a general von Neumann algebra. For
each projection e [ } the associated face Fe , K is the normal
state space of the subalgebra e}e. Thus Fe is a blown-up 3-ball
iff e is a halvable projection. We will use 3-frames to define
orientation for these (facial) blown-up 3-balls Fe, and then later
‘‘globalize’’ to K.

We topologize the closed subsets of K by the Hausdorff
metric. Then we topologize the 3-frames of blown-up 3-balls of
K by the product topology (regarding 3-frames as 6-tuples of
norm closed faces).

If B is a global 3-ball of K, we define two 3-frames of B to
be equivalent if there is a continuous path from one to the
other. An orientation of B is then an equivalence class of
3-frames of B. We will refer to a blown-up 3-ball B of K
together with a choice of orientation of B as an oriented
blown-up 3-ball. It is easily seen that the definition above
reduces to the previous definition of orientation for ordinary
3-balls.

We now will define the concept of global orientation for K.
Let @ be the space of all facial blown-up 3-balls with the
Hausdorff metric, and let 2@ be the space of all oriented
blown-up 3-balls B topologized by the quotient topology from
the set of 3-frames.

4. THEOREM. The natural surjection p : 2@ ° @ is contin-
uous and open, and it organizes 2@ to a locally trivial Zsym bundle
over B, where Zsym is the group of central symmetries in }.

Our proof of this theorem makes use of the fact that two
projections that are near to each other can be exchanged by a
unitary that is near to 1. More precisely: two projections p, q [
} with ip 2 qi , 1 admit a unitary u in the norm closed
subalgebra generated by p and q such that u is the product of
two symmetries in } and satisfies

u*pu 5 q and i1 2 ui , Î2ip 2 qi.

The bundle 2@ ° @ is called the bundle of oriented blown-up
3-balls.

We will define a global orientation of K as a continuous
cross-section f : @ 3 2@ with an additional consistency
condition by which ‘‘cutting down a blown-up 3-ball to a
smaller blown-up 3-ball’’ preserves orientation. (There is no
such requirement in the C* case because ordinary 3-balls are
minimal.) Let B1 . B2 be blown-up 3-balls of K. Then we say
that an orientation of B2 is the restriction of an orientation of
B1 if the two orientations can be represented by 3-frames such
that the first generalized axis in B2 is the first generalized axis
in B1 intersected by B2 and such that the two associated
rotational actions coincide on B2. A technical lemma guaran-
tees the existence of restricted orientations: if B1 and B2 are
blown-up 3-balls with B1 . B2 and B1 is oriented, then there
is a unique orientation of B2, which is the restriction of the
given orientation of B1.

We will say that a cross-section f of the bundle of oriented
facial 3-balls is consistent if B1 . B2 implies that f(B2) is the
restriction of f(B1). Then we define a global orientation of K
(or just an orientation of K) as a consistent continuous
cross-section of the bundle of oriented blown-up 3-balls.

Alternatively we can use Cartesian triples to define an
algebraic notion of orientation for the corresponding local
subalgebras e}e where e is a halvable projection, and then
define a global orientation for }. Two Cartesian triples a1 and
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a2 in the same local subalgebra e}e are said to be equivalent
if they can be connected by a continuous path from a1 to a2 in
e}e. Here one can show that a1 and a2 are equivalent iff there
is a unitary in e}e, which carries a1 into a2, and also iff there
is a unitary in e}e, which carries the element r1 into the
element r2 and the operator ca1

into ca2
. Thus one may

alternatively interpret an orientation of e}e as a (unitary)
equivalence class of pairs (r, c) where r is a symmetry and c
is a rotational derivation on e}e such that ker c 5 {r}c. Then
an orientation of e1}e1 is the restriction of an orientation of
e2}e2 if e1 # e2, and the two orientations can be represented
by pairs (r1, c1) and (r2, c2) such that r1 5 e1r2 5 r2e1 and c2
restricts to c1 on e1}e1. (Note that the technical lemma on the
existence of restricted orientations that was mentioned before
is proved in this setting.)

Now the natural surjection of the local subalgebras e}e onto
the halvable projections e defines a Zsym bundle, which is locally
trivial for the norm topology. We call it the bundle of oriented
local algebras. Then the concept of consistency for a cross-
section of this bundle and the concept of a global orientation
of } is defined as in the dual context.

Representing orientations of local subalgebras by pairs (r, c)
as explained above, we can prove a theorem in which the
definition of a global orientation of } is restated in a form
closer to the definition of a dynamical correspondence. Recall
that a partial symmetry in } is a self-adjoint element r whose
square e 5 r2 is a projection, so r is a symmetry in the
subalgebra e}e and r 5 p 2 q, where p and q are projections
such that p 1 q 5 e. We will write r1 ,, r2 if the partial
symmetries r1 5 p1 2 q1 and r2 5 p2 2 q2 satisfy p1 # p2 and
q1 # q2.

5. THEOREM. There is a natural 1–1 correspondence between
global orientations of } and maps r ° cr, which assign to each
partial symmetry r a rotational derivation cr of e}e, where e 5 r2,
such that

~i! ker cr 5 $r%c

~ii! Each unitary that carries r1 into r2 carries cr1
into cr2

.

~iii! If r1 ,, r2, then cr2
5 cr1

on e1}e1 where e1 5 r1
2.

We now will explain how one can use the associative product
in } to construct a global orientation of K from a central
symmetry z [ }. If B [ @, then B 5 Fe for a halvable
projection e [ }. Choose a symmetry r [ e}e, then another
symmetry s [ e}e such that r C s 5 0, and let t [ e}e be the
symmetry defined by t 5 izrs. Then (r, s, t) is a Cartesian triple
in e}e, and it can be shown that different choices of r and s give
equivalent Cartesian triples. Thus (r, s, t) determines an
orientation of B that depends only on z. This gives a cross-
section of the bundle 2@ 3 @, and it can be shown that this
cross-section is consistent and continuous. With this we have
associated a global orientation to each central symmetry z [
}.

We also can associate a Jordan compatible von Neumann
product to each central symmetry z [ }. It is expressed by the
central projection c 5 1⁄2(1 1 z) through the formula

a 3 b 5 cab 1 ~1 2 c!ba.

6. THEOREM. If } is a von Neumann algebra with normal state
space K, then there is 1–1 correspondence between (i) global
orientations of K, (ii) Jordan compatible von Neumann products
in }, (iii) central symmetries in }, such that each central
symmetry z [ } corresponds to the associated orientation and
product (as defined above).

In the proof of this theorem one must show that each global
orientation of K is associated to a central symmetry z [ }. This
z is obtained by ‘‘pasting together’’ central symmetries from

local subalgebras e}e in a construction that involves a strong
version of the comparison theorem with unitary equivalence in
place of Murrey von Neumann equivalence. (This version of
the comparison theorem follows from the general JBW-
theorem in ref. 19, 5.2.13, but the proof can be simplified for
von Neumann algebras.)

The given product in } determines a natural orientation of
K (the one for which z 5 1), and it follows easily from theorem
6 that a Jordan automorphism F : }3} is a *-automorphism
iff the affine automorphism F* : K 3 K is orientation pre-
serving. As a consequence, a von Neumann algebra is deter-
mined by the combination of the normal state space and an
orientation. Another consequence is the following:

7. COROLLARY (Kadison, ref. 7). If F is a Jordan automor-
phism of a von Neumann algebra }, then there is a central
projection c [ } such that F restricted to c} is a *-automor-
phism and F restricted to (1 2 c)} is a *-anti-automorphism.

Note that this corollary does not require the topological
bundle properties of theorem 4, as one can rely on the purely
algebraic characterization of a global orientation given in
theorem 5.

Note that the bijection between (i) and (ii) of theorem 6 is
canonical in that it is uniquely determined by the Jordan
structure of }, whereas the bijections between these and (iii)
are noncanonical, as the associative product 3 assigned to the
central symmetry z in the displayed equation before theorem
6 depends on the given product in the von Neumann algebra
}. Thus it is not true that a Jordan compatible von Neumann
product can be specified by the combination of the normal
state space and a choice of central symmetry. Unless one is
given a multiplication or orientation to start with, a central
symmetry is not enough to determine an orientation. What a
central symmetry does determine is a change from one ori-
entation to another.

The central symmetry z 5 21 changes an orientation f : @
3 2@ to its opposite orientation for which the three gener-
alized axes of any 3-frame in any f(B) are reversed (or just one
of them is reversed, or their order is changed by an odd
permutation.) If } is a factor, then the only central symmetries
are z 5 1 and z 5 21, so in this case there are just two
orientations, the one being the opposite of the other. If } is
the direct sum of n , ` factors (in particular if } is finite
dimensional), then there are 2n orientations.

By theorems 1 and 6, there is also a (canonical) bijection
between global orientations and dynamical correspondences.
It is easily seen that if a ° ca is the dynamical correspondence
associated to a given orientation, then a ° 2ca is the
dynamical correspondence associated to the opposite orien-
tation. Thus a passage to the opposite orientation induces a
change from the one-parameter group exp(tca) to exp(2tca),
i.e., a change of sign for the time parameter t.

Finally, we will relate the concept of orientation for the
normal state space of a von Neumann algebra to our previous
concept of orientation for a C*-algebra ! with state space K,
which is also the normal state space of the enveloping von
Neumann algebra } > !**. Consider the restriction of the
bundle 2@ 3 @ of oriented blown-up 3-balls to the set of
3-balls. Set theoretically this bundle can be identified with the
bundle of facial 3-balls defined in ref. 5. (In both cases an
orientation of a 3-ball is determined by a frame, with two
frames determining the same orientation if one can be rotated
into the other.) Topologically the two bundles are different.
The topology of the bundle considered here is derived from the
norm (via the corresponding Hausdorff metric for closed
subsets of K), whereas the topology of the previous bundle is
derived from the w*-topology of K (as a subset of !*). To keep
these two topological bundles apart, we now will denote the
former by 2@3 3 @3 (norm) and the latter by 2@3 3 @3
(weak*). (A different notation is used in ref. 5.)
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It is not hard to show that the natural identification gives a
continuous bundle isomorphism from 2@3 3 @3 (norm) to
2@33 @3 (weak*), and that each continuous cross-section of
the latter (i.e., each C*-orientation of K) induces a continuous
cross-section of the former. In fact, each continuous cross-
section of 2@33 @3 (weak*) induces a consistent continuous
cross-section of the entire bundle 2@ 3 @) (i.e., a von
Neumann orientation of K), but this is less trivial. Here one
goes from a C*-orientation to a C*-multiplicative structure in
! (ref. 5, Th. 8.4), then via the bidual to a von Neumann
multiplicative structure in }, and then back to a von Neumann
orientation of K.
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